GAT-3 transporters regulate inhibition in the neocortex.
نویسنده
چکیده
The role of GAT-3 transporters in regulating GABA(A) receptor-mediated inhibition was examined in the rat neocortex using an in vitro slice preparation. Pharmacologically isolated GABA(A) receptor-mediated responses were recorded from layer V neocortical pyramidal cells, and the effects of SNAP-5114, a GAT-3 GABA transporter-selective antagonist, were evaluated. Application of SNAP-5114 resulted in a reversible increase in the amplitude of an evoked GABA(A) response in most cells examined, although no effect on the decay time was observed. Examination of the spontaneous output of inhibitory interneurons revealed a reversible increase in the frequency and amplitude of spontaneous inhibitory synaptic currents as a consequence of GAT-3 inhibition. This effect of GAT-3 inhibition on spontaneous inhibitory events was action potential-dependent because no such increases were observed when SNAP-5114 was applied in the presence of TTX. These results demonstrate that GAT-3 transporters regulate inhibitory interneuron output in the neocortex. The increase in inhibitory interneuron excitability resulting from application of SNAP-5114 suggests that inhibition of GAT-3 transporter function results in a reduction in ambient GABA levels, possibly by a reduction in carrier-mediated GABA release via the GAT-3 transporter.
منابع مشابه
Plasma membrane transporters GAT-1 and GAT-3 contribute to heterogeneity of GABAergic synapses in neocortex
Cortical GABAergic synapses exhibit a high degree of molecular, anatomical and functional heterogeneity of their neurons of origins, presynaptic mechanisms, receptors, and scaffolding proteins. GABA transporters (GATs) have an important role in regulating GABA levels; among them, GAT-1 and GAT-3 play a prominent role in modulating tonic and phasic GABAAR-mediated inhibition. We asked whether GA...
متن کاملSubtype-specific GABA transporter antagonists synergistically modulate phasic and tonic GABAA conductances in rat neocortex.
GABAergic inhibition in the brain can be classified as either phasic or tonic. gamma-Aminobutyric acid (GABA) uptake by GABA transporters (GATs) can limit the time course of phasic currents arising from endogenous and exogenous GABA, as well as decrease a tonically active GABA current. GABA transporter subtypes 1 and 3 (GAT-1 and GAT-3) are the most heavily expressed of the four known GAT subty...
متن کاملImpairment of GABA transporter GAT-1 terminates cortical recurrent network activity via enhanced phasic inhibition
In the central nervous system, GABA transporters (GATs) very efficiently clear synaptically released GABA from the extracellular space, and thus exert a tight control on GABAergic inhibition. In neocortex, GABAergic inhibition is heavily recruited during recurrent phases of spontaneous action potential activity which alternate with neuronally quiet periods. Therefore, such activity should be qu...
متن کاملGABA transporters regulate a standing GABAC receptor-mediated current at a retinal presynaptic terminal.
At the axon terminal of goldfish retinal bipolar cells, GABA(C) receptors have been shown to mediate inhibitory reciprocal synaptic currents. Here, we demonstrate a novel standing GABAergic current mediated exclusively by GABA(C) receptors. Selective inhibition of GAT-1 GABA transporters on amacrine cells increases this tonic current and reveals a specific functional coupling between GAT-1 tran...
متن کاملLocalization and Function of GABA Transporters GAT-1 and GAT-3 in the Basal Ganglia
GABA transporter type 1 and 3 (GAT-1 and GAT-3, respectively) are the two main subtypes of GATs responsible for the regulation of extracellular GABA levels in the central nervous system. These transporters are widely expressed in neuronal (mainly GAT-1) and glial (mainly GAT-3) elements throughout the brain, but most data obtained so far relate to their role in the regulation of GABA(A) recepto...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of neurophysiology
دوره 94 6 شماره
صفحات -
تاریخ انتشار 2005